Tuesday, March 20, 2012

The planetary pileups of popular solar system orbits


Some orbits are apparently more popular than others in young solar systems emerging around baby stars - which often results in "planet pileups" and "planet deserts."


Sophisticated computer simulations have revealed a rather plausible explanation for a phenomenon that has long puzzled astronomers. 

Essentially, rather than occupying orbits at regular distances from a star, giant gas planets similar to Jupiter and Saturn appear to prefer residing within certain regions of mature solar systems while staying clear of others.

The planet pileups of popular solar system orbits"Our results show that the final distribution of planets does not vary smoothly with distance from the star," explained Ilaria Pascucci, an assistant professor at the University of Arizona's Lunar and Planetary Laboratory. "Instead, it has clear 'deserts' - deficits of planets - and 'pileups' of planets at particular locations."


Pascucci and Richard Alexander of the University of Leicester identified high-energy radiation from baby sun-like stars as the likely force that carves gaps in protoplanetary disks, the clouds of gas and dust that swirl around young stars and provide the raw materials for planets. The gaps then act as barricades, corralling planets into certain orbits.

Of course, the exact locations of those gaps depend on the planets' mass, but they generally occur in an area between 1 and 2 astronomical units from the star. One astronomical unit, or AU, marks the average distance from the Earth to the sun. 

According to conventional wisdom, a solar system starts out from a cloud of gas and dust. At the center of the prospective solar system, material clumps together, forming a young star. As the baby star grows, its gravitational force increases as well, and it attracts dust and gas from the surrounding cloud.

Accelerated by the growing gravitation of its star, the cloud spins faster and faster, and eventually flattens into what is called a protoplanetary disk. Once the bulk of the star's mass has formed, it is still fed material by its protoplanetary disk, but at a significantly lower rate.

"For a long time, it was assumed that the process of accreting material from the disk onto the star was enough to explain the thinning of the protoplanetary disk over time," said Pascucci. "Our new results suggest that there is another process at work that takes material out of the disk."

That process, called photo-evaporation, works by high-energy photons streaming out of the star and heating the dust and gas on the surface of the protoplanetary disk.

"The disk material that is very close to the star is very hot, but it is held in place by the star's strong gravity," Alexander noted. "Further out in the disk where gravity is much weaker, the heated gas evaporates into space."

However, even further out in the disk, the radiation emanating from the star is not intense enough to heat the gas sufficiently to cause much evaporation. Yet at a distance between 1 and 2 AU, the balancing effects of gravitation and heat clear a gap.

While studying protoplanetary disks, Pascucci also discovered that gas on the surface of the disk was gravitationally unbound and leaving the disk system via photoevaporation. These were the first observations proving that photoevaporation does occur in real systems.

Encouraged by those findings, Alexander and Pascucci subsequently used the ALICE High Performance Computing Facility at the University of Leicester to simulate protoplanetary discs undergoing accretion of material to the central star that took the effects of photo-evaporation into account.

"We don't yet know exactly where and when planets form around young stars, so our models considered developing solar systems with various combinations of giant planets at different locations and different stages in time," Alexander said.

Diamond Earrings

Read more

Monday, March 12, 2012

A Strong Backhand Slap from End of Solar Storm


The solar storm that seemed to be more fizzle than fury got much stronger early Friday before fading again.

At its peak, it was the most potent solar storm since 2004, space weather forecasters said.

No power Relevant Products/Services outages or other technological disturbances were reported from the solar storm that started to peter out late Friday morning.

Solar storms, which can't hurt people, can disturb electric Relevant Products/Services grids, GPS systems, and satellites. They can also spread colorful Northern Lights further south than usual, as the latest storm did early Friday.

And more storms are coming. The federal government's Space Weather Prediction Center says the same area of the sun erupted again Thursday night, with a milder storm expected to reach Earth early Sunday.

The latest storm started with a flare on Tuesday, and had been forecast to be strong and direct, with one scientist predicting it would blast Earth directly like a punch in the nose. But it arrived Thursday morning at mild levels -- at the bottom of the government's 1-5 scale of severity. It strengthened to a level 3 for several hours early Friday as the storm neared its end. Scientists say that's because the magnetic part of the storm flipped direction.

"We were watching the boxer, expecting the punch. It didn't come," said physicist Terry Onsager at the National Oceanic and Atmospheric Administration's space weather center Relevant Products/Services in Boulder, Colo. "It hit us with the back of the hand as it was retreating."

Forecasters can predict a solar storm's speed and strength, but not the direction of its magnetic field. If it is northward, like Earth's, the jolt of energy flows harmlessly around the planet, Onsager said. A southerly direction can cause power outages and other problems.
Link
Thursday's storm came in northerly, but early Friday switched to the fierce southerly direction. The magnetic part of the storm spent several hours at that strong level, so combined with strong radiation and radio levels, it turned out to be the strongest solar storm since November 2004, said NOAA lead forecaster Bob Rutledge.

Skywatchers reported to NOAA shimmering colorful auroras in Michigan, Wisconsin and Seattle -- areas that don't normally see the Northern Lights -- Rutledge said. Other space weather enthusiasts reported auroras in Alaska, Minnesota, and North Dakota and in the southern hemisphere in Australia and New Zealand.

Diamond Earrings

Read more